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Abstract. We prove, for a particle moving in a plane under the influence of a conservative 
force, that when the motion is constrained by a ‘second’ invariant quadratic in the velocities, 
then the potential allows separability of the Hamilton-Jacobi equation in rectangular, 
polar, elliptical cylinder or parabolic cylinder coordinates. This link shows the intimate 
connection between quadratic invariants and the two-dimensional Hamilton-Jacobi 
equation. We give examples of the utility of parabolic cylinder coordinates in cases of 
recent study. 

1. Introduction 

The motion of a particle moving in a plane under the action of conservative forces is 
an old problem, but recent developments have revealed a rich and intricate behaviour 
in all but the most simple cases (Berry 1978, Helleman 1980). It is now known that 
most cases are not integrable and that an irregular phase space motion usually occurs. 
There is no general criterion for selecting those potentials which give rise to a 
particular type of behaviour, but there are certain classic results covering whole classes 
of potentials. 

The solution of the dynamical problem is possible if we have a separable Hamilton- 
Jacobi equation (Landau and Lifshitz 1969). In that case there is a constant of motion 
(the separation constant) in addition to the energy, and the resulting motion is regular. 
The work of Stackel (1893) and Eisenhart (1948) shows that for motion in a plane 
there are specific forms of the potential leading to separable Hamilton-Jacobi equations 
in orthogonal coordinate systems only for the four cases of rectangular, polar, parabolic 
elliptical cylinder coordinates. 

In his classic book, Whittaker (1944) considers the problem in the reverse way: 
assuming an invariant of motion other than energy, which potentials are possible? 
Whittaker gave a theorem for the special case of an invariant which is quadratic in 
the velocities (Whittaker 1944, 0 152). 

In this paper we point out that Whittaker’s theorem is incorrect in the way in which 
he stated it, and that, in its complete form, it is actually complementary to the Stackel 
(1893) and Eisenhart (1948) result. We also explain how the correct theorem is 
relevant to several recent studies of dynamical systems. 

@ 1983 The Institute of Physics 4203 
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2. The complete Whittaker theorem 

‘The only cases of the motion of a particle in a plane, under the action of conservative 
forces, which possess an integral quadratic in the velocities other than the energy, are  
those in which the potential is such that the Hamilton-Jacobi equation is separable in 
Cartesian, polar, elliptical o r  parabolic cylinder coordinates’. 

2.1. The proof 

Whittaker (1944) set up the mechanism for the general proof by assuming an invariant 
quadratic in the velocities and finding the partial differential equation satisfied by the 
potential V. However, by assuming a constant never to be zero, he eliminated a whole 
class of potentials and gave an incomplete result. Whittaker mentioned cases for 
Cartesian and polar cordinates and gave the correct result for elliptical cylinder coordin- 
ates, but he ignored the case where the potential V ( x ,  y)  satisfies 

(a2 V/ay2-a2 V / a x 2 ) ( - b ’ y  - bx+ C,) 

+ 2 ( a 2 v / a x  d y ) ( b y -  b ’x+c2)+3b  a V / a x - 3 b r a V / a y = 0  (1) 

where b, b‘ ,  c ,  and c2 are constants. Potentials satisfying (1) have the required type 
of invariant; they lead to  a separable Hamilton-Jacobi equation when a conversion to 
parabolic cylinder coordinates is made, as we now demonstrate. 

We begin by making a shift in the origin and then a clockwise rotation of axes by 
tan-’( b’/ b )  t o  give new coordinates ( X ,  Y ) :  

X = b ( x  - ~ 3 )  - b’( y - CA) ,  Y = b’(x-c , )+ b (y -c , ) .  

If the constants c3 and c4 are chosen to be 

c3 = (bc ,  + b’c2)/(  b2 + b”), CA = (b’c ,  - bc,)/( b2 + b’ , ) ,  

then equation (1) is transformed into 

x ( a 2 v / a x 2 - a 2 v / a Y 2 ) + 2 ~  a2v/ax a Y + 3  av/ax=o. 

v= U/(52+$)  

x = 577 

a 2 u / a g a q = o  

U = SI(5) + g2( 7 7 )  

We next set 

where we are transforming to  parabolic cylinder coordinates, so that 

Y =&’- 7 2 ) .  

Equation (4) then reduces to 

with the solution 

where g, and g 2  are arbitrary functions. The potential V is given by equations (5) 
and (8), 

v=(gl(5)+g2(77))/(57+772) (9) 
and we see that it has just the form required for separability of the Hamilton-Jacobi 
equation (Landau and Lifshitz 1969, § 48). 



The complete Whitta ker theorem 4205 

In the other case when an invariant quadratic in the velocities exists, Whittaker 
(1944) has shown that V can be expressed as 

v = ( ~ , ( ( Y ) - - ~ ( P ) ) / ( a 2 - P 2 )  (10) 

where the constant (Y and constant P curves are confocal ellipses and hyperbolae. The 
functions $J~ and d2 in (10) are arbitrary. We point out that (10) also contains the 
two other coordinate systems to be considered: let the focal distance be f and then 

In equation ( lo) ,  ( r ,  $I) are polar coordinates, ( x ,  y )  are Cartesian rectangular coordin- 
ates and h i ,  h2,  k l ,  k2 are arbitrary functions. The above expressions for V,  ( lo) ,  
(1 l a )  and (1 1 b), all lead to separable Hamilton-Jacobi equations (Landau and Lifshitz 
1969, § 48), and so the complete Whittaker theorem is established. 

3. Applications 

The classes of potentials discussed have wide application in mechanics, optics and other 
branches of physics. The potential in a mechanical system corresponds to the refractive 
index profile in a multimode optical fibre (Ankiewicz and Pask 1983). For example, 
refractive index distributions expressible in the form of equation (10) have been used 
to predict and explain the observed elliptic and hyperbolic caustic curves in slightly 
non-circular graded index optical fibres (Ankiewicz 1979). The case of motion in the 
presence of two gravitational centres is the classic case for use of elliptic coordinates 
(Whittaker 1944, § 53). However, we mainly wish to discuss the class which Whittaker 
overlooked, i.e. potentials separable in parabolic cylinder coordinates. This class has 
been used to solve optical fibre bending problems (Gambling and Matsumura 1977) 
and is vital for many applications of current interest in dynamics. 

3.1. Potentials and the Painleue' property 

The 'weak PainlevC property' has been proposed as a criterion of integrability. By 
attempting to satisfy this property, a family of homogeneous potentials have been 
found (Ramani e? a1 1982): 

where [ n / 2 ]  is the largest integer <n/2 ,  and (" ik )  is a binomial coefficient. We now 
show that this family leads to integrable Hamiltonians because each potential can be 
expressed in the form of equation (9) using parabolic cylinder coordinates 5 and 7 as 
defined in (6): 

v, = (5*"'2+(-1)"72"+*)/(5*+ 7 2 ) .  (13) 

We prove that (13) is indeed the same as (12) by looking at the recurrence relations 
in each case, as well as the first two potentials in each set. 
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By writing the expansions and using the well known identity 

it can be seen that, for the potential of equation (12) ,  we have 

Vn*l = 2yV, + x z  v,-l ( 1 4 )  

with V,= 1 and V I  = 2y. 

relation 
If we multiply both sides of (1 3 )  by (5'- 77') and rearrange, we find the recurrence 

v,,, =(52-772)vn+52772vn-l (15) 
with V,=  1 and V I  = t2- v 2 .  

From the transformations used (equation (6 ) )  it is clear that relations (14) and 
(15) are  identical, as a re  V,  and V I  thus proving that V,, can be written as in equation 
( 1 3 )  for all n. 

We can now use the Hamilton-Jacobi formulation to find the second invariants 
explicitly for potentials as in (9). The  Hamiltonian is 

(16)  H = 2- + v = [ I /  (5' + 7 7 2 ) l [ t ( P :  + P', ) + g,  (5) + g d  77 11 = E 

where the energy E is conserved. The second invariant, C, can thus be written 

By adding (17) and (18 ) ,  and substituting in for E from (16),  we obtain 

c = (5*+ 7721-1(772gl(5)-52g2(77))-t(52+ 772)(52ri2- V 2 k 2 ) .  (19)  
For the particular class we were considering, 

g,(5)  = 5 2 n + 2 ,  gz(77) = (-l)n772n+2, 

so 

The  form in Cartesian coordinates (22) agrees with that given by Ramani et af (1982). 

3.2. He'non-Heiles type potentials 

A case which has received much attention involves the integrable class of generalised 
HCnon-Heiles potentials: 

VHH(x, y )  = $ ( A x 2 + B y 2 ) + D ( x 2 y + 2 y 3 )  ( 2 3 )  
where A,  B and D are  constants. By writing down the derivatives aV/ax etc, 
substituting them into equation (1)  and equating like terms, we find coefficients b, b ' ,  
c 1  and c2 .  In this case c1  = b' = 0, and b(4A - B) + 4Dc2 = 0. Thus the only coordinate 
change required is a shift of the y axis. From equations ( 2 )  and ( 3 ) :  

x = x  and Y = y - c ,  (24) 
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where 

c4 = -c’/ b = (4A - B)/4D. 

Thus 

VHH(X, Y) = D(X2 Y + 2 Y3) +:(SA - B)(X2 + 4 Y *) 

+ ( Y/8 D)(4A - B)( 12A - B) + (A/8  D2)(4A - B)’ 

+ (A/8D2)(4A - B)’ V, 

(26a)  

(26b) 

= (D/4)  V3++(6A - B) Vz +[(4A - B)( 12A - B)/ 1 6 0 1  
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(25) 

where the V, are given by (12) and (13). Thus VHH allows separation of the 
Hamilton-Jacobi equation in parabolic cylinder coordinates and a second invariant 
exists for all A, B, D. The invariant, in terms of the variables X and Y, is found by 
substituting the appropriate gl(t) and g 2 ( T )  into (19). The constant term in (266) is 
immaterial. This gives 

C = X2[SDX2 + DY’ + l (6A - B) Y + ( 1/ 16D)(4A - B)( 12A - B)] 

- X ( X Y - X Y ) .  (27a)  

Using equation (24), we may go back to the (x, y)  coordinates: 

C H H  = -4 DC = (B - 4A + 4 Dy ) X * - 4 DxXY - x ’[ D’x’ + 4 D2 y2 

+ 4ADy + A(4A - B)]. (27b) 

Equation (27b) is in agreement with the invariant found by other methods (Chang 
et a1 1981, 1982, Grammaticos et a1 1982). 

3.3 Coupled quartic oscillators 

Bountis et a1 (1982) consider potentials of the form 

V, =&(Ax2+ By’)+:(x‘+ay4+2px’y2) (28) 

and find that the resulting particle motion is regular for A = B when (T = p = 1 or (T = 1, 
p = 3. These two cases lead to separable problems in polar and rectangular coordinates. 
Following the sort of argument used above, we find two more integrable cases by 
converting to parabolic coordinates and requiring the conditions for separability, 
equation (91, to hold. The potential is expressed in terms of Vn, equations (12) and 
( 13), as follows: 

B = 4A, a = 1 6 ,  p = 6 :  Vo=iAV2+$V4 ( 2 9 4  

B = :A, a=’ 1 6 3  p = R :  V, = B V2 + & V,. (29b) 3 

The invariants can be found from equation (19). 

4. Conclusion 

The following block diagram summarises the connections between statements made 
in this paper concerning motion by a particle in a plane under the influence of a 
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( b )  V = C f ( q J ~ -  . 
for (q , ,  q 2 )  Cartesian, 

potential V:  

( c )  The Hamilton-Jacobi 
equation is 

( a )  A second invariant quadratic 
in velocities exists 

/ \ 

polar, parabolic or 
elliptical coordinates 

separable 

In ( b ) ,  the functions f and g are arbitrary and h2 is the square of the appropriate scale 
factor (Landau and Lifshitz 1969,§ 48). The link ( c )  to ( b )  was established by Stackel 
(1893) and Eisenhart (1948), and the link (c)  to ( a )  is part of the theory of dynamics. 
The link ( a )  to ( b )  is provided by the complete Whittaker theorem as described in 
this paper. 
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